
NSWI120 - Page 1/2 (exam #5 – 2017.02.13)
Write your answers to the special response sheet you received (with your name and photograph). If you are using more than a single
sheet of paper for your answers, then mark each sheet with its number / total number of sheets you will hand over.

Task 1
Assume a typical modern operating system line Linux or
Windows. Describe and explain what would be the main
parts of a process context.

Task 2
Assume we are implementing an I2C ambient light sensor
that should communicate via the same protocol as sensor
ALS-PDIC17-57B/TR8 of the Everlight company is using (its
datasheet is attached to this exam sheet – focus mainly on
page 11). When designing our sensor we came across a
problem that occurs if master is communicating with our
device using a 100 kHz clock frequency. If we are accepting
a 16-bit word read transaction, then after successfully
receiving the address byte and after its positive
acknowledgement we are never able to respond sooner
than after 0.1 milliseconds with the following transmission
of the first ADC register byte. Explain in detail, if (and how)
it is possible to solve this problem using the features
provided by the I2C bus.

Task 3
Assume the following declarations (longword is a 32-bit
unsigned integer type, word is a 16-bit unsigned integer
type):
 type PLongword = ^longword;
 PWord = ^word;
 procedure Conv(src : PWord; dst : PLongword);

Implement the Conv procedure in Free Pascal, so that it
translates the input null-terminated string src from UTF-16
LE encoding into UTF-32 LE encoding and it stores the
resulting UTF-32 LE null-terminated string characters to a
memory location pointed to by the dst argument (assume
your code will be run only on little-endian platforms, and
that the target location for the dst variable has enough
unused space). Assume Unicode characters in range $00D800
to $00DFFF can never appear in any valid Unicode string, and
can be used by a concrete encoding to encode other
characters. Also assume that codes above $10FFFF have no
valid character assigned in Unicode, and that Unicode
characters in range $010000 to $10FFFF are in UTF-16
encoded as follows:
(1) First subtract value $010000 from character’s code, and
then the resulting 20-bit number is split into two 10-bit
parts that are separately encoded according the following
rules.
(2) The upper 10 bits of the 20-bit value are stored in the 10
lowest bits of the first 16-bit surrogate character (stored on
lower address). Upper 6 bits of the first surrogate are set to
(bit 15 is leftmost, bit 10 is rightmost):
1101 10

(3) The lower 10 bits of the 20-bit value are stored in the
lowest bits of the second 16-bit surrogate character (stored
on higher address). Upper 6 bits of the second surrogate are
set to (only bit 10 is different from first surrogate):
1101 11

Task 4
We are founders of Matfyz’ first fast food chain called MFC
(Malostranský Fried Cheese). The main refreshment is a
wide variety of beverages produced by Pepsi Co. We plan to
use the same model for selling the beverages as our closest
competitor (KFC) is using, i.e. our customers will be able to
tank any amount of a selected beverage into a provided
cup. Our goal is to manufacture a post mix device for our
restaurants, that should use a proven design – it will use a

touch screen (see picture) with 576x1024
pixels resolution, that should always
display a list of available beverages (each
represented by a square 180x180 pixel
area on the screen) – any liquid should
pour from the post mix if and only if
there is a continuous touch detected
over a beverage image. The output
nozzle has several parallel inputs: pure
tap water (controlled by an
electromagnetic valve Vwater),
carbonated water (controlled by valve
Vsoda), and 5 nozzles from tanks with
specific flavors (valves V1 to V5). The
following beverages are available (braces
contain coordinates of the top left corner

of the controlling square and number of the control valve):
Pepsi (198,60→1), Pepsi Light (85,280→2), 7UP (310,280→3),
Mirinda (85,490→4), Lipton Ice Tea (310,490→5) – only ice
tea is mixed with pure water, everything else is mixed with
soda. There are also options to tank pure water (85,700) or
pure soda (310,700).
We will be using a 32-bit μC to control the post mix – the
controller has an embedded I2C bus controller and also 32
bit GPIO controller with digital I/O lines IO0 to IO31. We
have connected IO0 to valve Vwater, pins IO1 to IO5 →
valves V1 to V5, pin IO6 → valve Vsoda. All GPIO lines are
initially configured as output lines inside the controller, and
we have a predefined procedure that can be used to
manipulate their state (LSbit represents state of IO0, MSbit
represents state of IO31):

procedure SetGpioOutputs(pins : longword);

There is a touch screen layer controller connected to the I2C
bus. We have available the following function:
function GetTouchInfo(
 var x : longword; var y : longword) : boolean;

that is using the I2C bus controller to read the last event
detected by the touch screen (x and y are coordinated of
the event, return value: true = touch was detected, false
= loss of touch was detected). Implement in Pascal a
firmware for the specified computer so that is behaves
exactly according the specification of the post mix from
above – write the program as simple as possible just by
polling the GPIO and touch screen controllers.

NSWI120 - Page 2/2

Common for all tasks marked with an X
Assume we have a specification of a CLR (Common
Language Runtime = standard .NET VM) based virtual
machine. Our VM is a machine with Harvard and stack-
based register architecture (all registers contain 32-bit
signed integer numbers; size of the register stack is
unlimited). The machine code for this VM is called CIL code
(Common Intermediate Language). Assume both the CIL
code and the virtual machine is storing all data in little-
endian order, and that VM’s instruction set contains at least
the following instructions (all have a single byte opcode
followed by argument values [if any]):

 ldsfld (opcode 0x7E) – load static field = load from a
global variable, whose address is the only instruction’s
argument

 stsfld (opcode 0x80) – store static field = store to a
global variable, whose address is the only instruction’s
argument

 call (opcode 0x28) – procedure or function call
(arguments are passed left to right on top of the register
stack, and are removed by the callee; return value is
also passed on top of the register stack)

 ret (opcode 0x2A) – return from subroutine (no ex. args.)

 add (opcode 0x58) – addition (no explicit arguments)

 mul (opcode 0x5A) – multiplication (no explicit
arguments)

 ble (opcode 0x31) – relative conditional jump: branch if
less than or equal to: instruction removes two values
from the stack, and if the second removed value is lower
or equal to the first removed one, a jump to a target
location (passed as instruction argument) is made.
Opcode is followed by a 1 byte representing jump offset
relative to the first byte of the instruction following ble.

Task 5 (X)

Without using any inline assembler write in Pascal code of a
procedure that, if compiled by a typical Pascal compiler,
could result in the following CIL code that we have
disassembled from a CIL executable into CIL assembler:
 0x20580000 7E 00 00 60 20 ldsfld [0x20600000]
 0x20580005 7E 04 00 60 20 ldsfld [0x20600004]
 0x2058000a 58 add
 0x2058000b 7E 08 00 60 20 ldsfld [0x20600008]
 0x20580010 7E 0C 00 60 20 ldsfld [0x2060000C]
 0x20580015 7E 10 00 60 20 ldsfld [0x20600010]
 0x2058001a 5A mul
 0x2058001b 58 add
 0x2058001c 31 26 ble 0x20580044
 0x2058001e 7E 08 00 60 20 ldsfld [0x20600008]
 0x20580023 7E 00 00 60 20 ldsfld [0x20600000]
 0x20580028 7E 04 00 60 20 ldsfld [0x20600004]
 0x2058002d 58 add
 0x2058002e 7E 00 00 60 20 ldsfld [0x20600000]
 0x20580033 7E 04 00 60 20 ldsfld [0x20600004]
 0x20580038 5A mul
 0x20580039 28 00 10 58 20 call 0x20581000
 0x2058003e 58 add
 0x2058003f 80 00 00 60 20 stsfld [0x20600000]
 0x20580044 2A ret

Task 6 (X)

Implement in Pascal a simplified core of the described VM

as a CIL code interpreter for the following 3 instructions
(rest will be implemented in future): ldsfld, stsfld, add.
Assume you have already a working implementation of a
stack data structure implemented as a single linked list of
longint values – see code below. Empty stack is
represented by a nil value in its top. The Push procedure
appends new value on top of the stack pointed to by the
top argument that is then updated by the procedure to
point to the new top. The Pop function returns current value
on the stack top and updates it to point to next item in
stack or to nil.
 type PReg = ^TReg;
 TReg = record
 value : longint;
 next : PReg;
 end;
 procedure Push(
 var top : PReg; value : longint); forward;
 function Pop(var top : PReg) : longint; forward;
Assume the CIL code for VM execution in already stored in
your global variable cil, that represents the code address
space of the VM (assume the first instruction for execution
lays on address [index] 0). There is also a global variable
data representing the data address space.
var cil : array[0.. $40000000] of byte;
 data : array[0.. $40000000] of byte;

Task 7

Assume we would like to store real number 12.6875 into a
single Pascal variable in our program in the standard fixed-
point 8.24 representation. How do we define such a
variable in standard Pascal? We will execute program
containing this variable on a 32-bit little-endian CPU, and
store the value 12.6875 into it, and we found out that the
variable is then stored on address 0x02BC4300. Write value
of every byte occupied by the variable as a number in
hexadecimal system.

Task 8

Assume we are programming a Pascal application whose
source code is split into several files (a1.pas to a3.pas,
where a2.pas contains the main program body). Explain in
detail how and in which steps the final executable file is
generated when using a typical Pascal compiler. Which
instruction will be pointed to by the entrypoint of such an
executable file?

Task 9
Assume a common operating system like Linux or Windows
running on the x86 architecture (IA-32, i.e. the 32-bit
variant of the standard Intel architecture used in common
PCs). Describe all the important states an application thread
can be in. For each such state explain its meaning and also
explain how can a thread typically get into it (e.g. via which
kernel syscall).

Task 10
Describe and explain all the necessary signals that a typical
parallel memory bus has to have, so that it can be used to
connect a single 2048x16 SRAM memory module.

